Sinusoidal frequency estimation by signal subspace approximation

نویسندگان

  • Juha Karhunen
  • Jyrki Joutsensalo
چکیده

Eigenvector-based methods such as multiple signal classification (MUSIC) are currently popular in sinusoidal frequency estimation due to their high resolution. A problem with these methods is the often high cost of estimating the eigenvectors of the autocorrelation matrix spanning the signal (or noise) subspace. In this work, we propose an efficient Fourier transform-based method avoiding eigenvector computation for approximating the signal subspace. The resulting signal subspace estimate can be used directly to define a MUSIC-type frequency estimator or as a very good initial guess in context with adaptive or iterative eigenvector computation schemes. At low signal-to-noise ratios, the approximation yields better results than exact MUSIC. It is also more robust than MUSIC against overestimating the number of sinusoids. Some variations of the basic method are briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Further Subspace Method Optimization for Tracking Real Valued Sinusoids in Noise

A further optimisation of adaptive subspace-based frequency estimation for multiple real valued sine waves is considered in this paper. Authors proposed in [10] a novel combination of strong adaptive covariance matrix update and optimised block processing for frequency values retrieval. The new optimised approach combines the projection approximation subspace tracking technique based on deflati...

متن کامل

On subspace-based methods for frequency estimation of random amplitude sinusoidal signals

Sinusoidal signals with random time-varying amplitude show up in many signal processing applications. Amplitude modulation results in degeneracy of the signal subspace, i.e. the signal subspace corresponding to one amplitude modulated sinusoid is no longer spanned by one vector. In this paper, we propose modi cations of two subspace-based techniques, namely ESPRIT and MODE for estimating the ce...

متن کامل

Adaptive ESPRIT algorithm based on the PAST subspace tracker

The Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithm is a subspace-based analysis method used in source localization or frequency estimation, originally designed in a block signal processing context. In other respects, the Projection Approximation Subspace Tracker (PAST) is a fast and robust subspace tracking method. This paper introduces a new frequency e...

متن کامل

Regularized Autoregressive Multiple Frequency Estimation

The paper addresses a problem of tracking multiple number of frequencies using Regularized Autoregressive (RAR) approximation. The RAR procedure allows to decrease approximation bias, comparing to other AR-based frequency detection methods, while still providing competitive variance of sample estimates. We show that the RAR estimates of multiple periodicities are consistent in probabilit...

متن کامل

Speech analysis by subspace methods of spectral line estimation

Over frames of short time duration, filtered speech may be described as a finite linear combination of sinusoidal components. In the case of a frame of voiced speech the frequencies are considered to be harmonics of a fundamental frequency. It can be assumed further that the speech samples are observed in additive white noise of zero mean, resulting in a standard signal-plus-noise model. This m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 40  شماره 

صفحات  -

تاریخ انتشار 1992